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High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound
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High-energy scattering in nonconformal gauge theories is investigated using the AdS/conformal field theory
~CFT! dual string-gravity theory. It is argued that strong-gravity processes, such as black hole formation, play
an important role in the dual dynamics. Further information about this dynamics is found by performing a
linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black
hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can
infer a total scattering cross section that grows with center of mass energy as ln2 E, saturating the Froissart
bound.
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I. INTRODUCTION

A dominant theme in the past few years of string theo
has been the conjectured gauge theory–string theory du
of Maldacena@1#. We are still far from anything approachin
a proof of this duality, and we face serious challenges on
most interesting question of using it to infer local propert
of string theory~see, e.g.,@2#!, but considerable evidence ha
been amassed that one can derive features of gauge th
from bulk gravitational physics. Much of what was initiall
learned dealt with quantities highly constrained by symm
tries, such as the mass spectrum, but more recently atte
has been turned to investigating dynamical properties of
theory that are not as tightly circumscribed. This has go
hand in hand with study of spacetimes corresponding
gauge theory vacua with less than the maximalN54 sym-
metry; these are typically found by deforming the Lagran
ian on the gauge theory side, and correspondingly turning
non-normalizable modes of bulk fields on the string the
side. A particularly interesting recent example is the work
Polchinski and Strassler@3#, which addresses a glarin
puzzle in the correspondence: How is it that string scatter
which is inherently soft at high energies, reproduces the
miliar hard behavior of QCD? By analyzing scattering in t
bulk, they find that the soft behavior of string theory co
spires with the shape of the bulk wave functions to prod
the correct power-law behavior. We can now ask what e
we might learn about QCD from the bulk perspective. O
obvious question immediately presents itself: What can
say about quantities like the total cross section in very h
energy scattering?

Another theme that has recently gained interest is tha
the contribution of strong gravitational effects to high ener
scattering. For example, in TeV-scale gravity scenar
based either on large extra dimensions or on strongly war
spacetimes, black holes should be produced once scatt
energies pass the fundamental Planck scale near a TeV
these processes are a very exciting aspect of the phen
enology of these models@4,5# ~for a review, see@6#!. One can
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readily estimate the relevant cross sections based on the
servation that at very high energies black hole format
should be well approximated classically~see, e.g.,@7#!. The
naive classical estimate of the cross section to produc
black hole,

s;pr h
2~E!, ~1.1!

wherer h is the Schwarzschild radius corresponding to cen
of mass energyE, is a good guide to the magnitude of the
effects, as has been confirmed by a more detailed re
analysis of classical high energy scattering@8#. Because of its
growth—likeE2/D23 in D flat dimensions—this cross sectio
is believed to be a dominant feature of high energy grav
tional scattering. Now a second obvious question prese
itself: What is the role of strong gravity and in particul
black holes in the dual gauge theory?

Indeed, as this paper will argue, our two questions
intimately related. Strong gravitational effects are a domin
feature of the high energy gauge theory scattering, and
estimate analogous to Eq.~1.1!, using properties of gravity in
deformed AdS backgrounds, yields a high energy cross
tion of the form

s;
1

m2 ln2S E

E0
D , ~1.2!

wherem is the mass of the lightest excitation. This behav
saturates the Froissart bound, which is implied by unita
and is believed by many to describe the correct high ene
behavior of QCD.

A more detailed description of the resulting gauge the
physics remains to be found, but if black hole formation
the bulk is the dominant process at high energy, we mi
hope to discover the dual physics of Hawking radiation a
other interesting effects. At present, however, a signific
obstacle appears from questions, raised by Susskind, a
whether the relevant gravitational solutions are stable. Th
not crucial for them to produce the cross section~1.2!, but it
is critical in determining the subsequent evolution of t
black hole and the corresponding gauge theory dynam
Regardless, it appears that one may be able to think of
©2003 The American Physical Society01-1
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STEVEN B. GIDDINGS PHYSICAL REVIEW D67, 126001 ~2003!
gauge theory physics as corresponding to a ‘‘fireball’’ th
then decays, more or less rapidly depending on these st
ity questions, into an approximately thermal state.

In outline, this paper will first review the basic setup of
truncated AdS space corresponding to nonconformal ga
theory, along the lines of@3#. This is followed by a discus-
sion of the scales relevant to strong gravitational effects
moderately high energies one expects to produce black h
small as compared to the anti–de Sitter radiusR, but at
higher energies these should grow larger thanR. Much of the
paper deals with the problem of determining their shape
the full nonlinear theory this is a very difficult problem, b
it is argued that a linear analysis can give substantial in
mation about the shape of such solutions. The basic lin
equations and boundary conditions are given in Sec. III
critical role is played by the dynamics that stabilizes t
infrared end of the space~the ‘‘radion’’!, and Sec. IV pre-
sents a linear analysis of gravity for both small and la
radion masses. In particular, in the heavy radion limit so
tions are found that correspond to the far field of an obj
that could be a black hole. In either limit of the radion ma
one finds cross-section estimates of the form~1.2!. Section
IV also briefly comments on the relevance of this physics
TeV-scale gravity scenarios in which the extra dimensio
may be approximated by a slice of AdS space. Section
contains further discussion of the dual gauge theory phys
and Sec. VI presents conclusions and several open ques
There are two appendixes: one that derives the Green’s f
tion for anti–de Sitter space truncated by an infrar
boundary—or brane—and another on stabilization mec
nisms such as that of Goldberger and Wise@9# and their
effective description in geometries whose only boundary
in the infrared.

II. GAUGE THEORY SCATTERING AND TRUNCATED
AdS SPACE

On the gauge theory side, we are interested in high en
scattering in a largeN N54 supersymmetric gauge theo
with broken conformal symmetry and partially broken sup
symmetry. Following Polchinski and Strassler@3#, we will
assume that on the gravity side, this is dual to a supergra
~or, more precisely, superstring! solution with warped metric

ds25e2A~y!hmndxmdxn1gmn~y!dymdyn ~2.1!

that is approximately of AdS type in a large region, name

ds2'
R2

z2 ~dz21hmndxmdxn!1R2dsX
2, ~2.2!

whereX is some appropriate compact manifold. HereR is the
AdS radius, and in terms of gauge theory parameters sati
the approximate relationR4;g2Na82. In particular, at long
distances we can effectively think of the smooth geome
given by Eq.~2.1! as being truncated in the infrared; in som
situations it is convenient to think of an ‘‘infrared brane’’ a
lying at this end of the space. Reference@3# takes the IR end
of the space to lie at an arbitraryz, but by an overall rescal
ing of coordinatesz→lz, x→lx we can without loss of
12600
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generality take the space to end atz5R. This choice also
eliminates the need for the different string scales discusse
@3#. Since the scale of the Kaluza-Klein masses is set byR
~as we will see in more detail!, and these are interpreted i
the gauge theory as glueballs, this means that the effec
QCD scale isLQCD;1/R.

If we perform scattering in this space, theconservedmo-
mentum is the gauge theory momentum,

pm52 i
]

]xm . ~2.3!

As reviewed in@3#, we can simply relate glueball scatterin
amplitudes to bulk scattering as follows. An incoming glu
ball state has a bulk wave function of the rough form

c;eipxf ~z/R!g~yi !. ~2.4!

Here g represents modes of the internal manifoldX, and
f (z/R) gives the radial wave function in AdS space. T
wave functions are exactly of this form in a space that
AdS53S5 truncated by an infrared boundary atz5R, but in
general the underlying smooth physics and deformation fr
AdS space will lead to additional mixing. The scattering a
plitudes take the form

Agauge~p!5E d10xA2GAbulk~xm,yi ,z!)
i

c i . ~2.5!

Details of the exact form of the wave functions are n
needed for our very general purposes, but they generic
have large support in the vicinity of the IR boundary. T
bulk amplitudes depend on theproper momentum as mea
sured by a local observer, which for a given conserved m
mentum is a function ofz:

p̃m~z!5
z

R
pm . ~2.6!

Note that with our conventionsp̃m5pm at the IR boundary.
There are several interesting thresholds that we encou

as we consider scattering at increasing energies. The fir
the threshold for scattering in which intermediate stri
states are important. This threshold is atp;1/Aa8. At higher
energies, the proper energy reaches this scale at a ra
given by

zscatt;
R

Aa8p
. ~2.7!

It is this scattering physics that is important for the amp
tudes studied in@3#. However, there are other potential
important effects that@3# does not include.

Specifically, we know that once proper energies pass
10D Planck scaleM P;gs

21/4/Aa8, gravity becomes strong
and in particular black holes can form. These may initially
best described as highly excited string states, but by
string correspondence principle@10# we expect a smooth
crossover from intermediate string states to intermed
1-2
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HIGH ENERGY QCD SCATTERING, THE SHAPE OF . . . PHYSICAL REVIEW D 67, 126001 ~2003!
black hole states at the correspondence scaleEc

;gs
22/Aa8. This physics is thus relevant forp*M P . If the

AdS radius~and other geometrical scales! are much larger
than the Planck length, these black holes can be thought
essentially living in flat space. As we go to higher energi
two things happen. First, one can make black holes
smaller values ofz, further into the UV region of the geom
etry. Any real~as opposed to virtual! black holes of this form
would of course be unstable to falling toward the bounda
But, perhaps more importantly, one can make larger bl
holes. Indeed, for given energy, the radius of a 10D bla
hole grows as

r h;E1/7, ~2.8!

and consequently the cross section for black hole produc
at the IR end of the space grows as

s;E2/7. ~2.9!

In terms of QCD parameters,M P;N1/4LQCD and Ec
;N2LQCD/(g2N)7/4. Above these energies, one expects p
sibly interesting consequences of the black hole forma
for QCD scattering. One is the power-law growth~2.9!. An-
other comes from the energy dependence of the Hawk
temperature of a 10D black hole:

TH;E21/7. ~2.10!

As is typical in black hole physics, this corresponds to
negative specific heat. Further aspects of this regime h
been explored by Dimopoulos, Emparan, and Susskind@11#.

As the energy grows further, the black hole size a
proaches the AdS radius. This occurs at an energy

ER;M P
8R7. ~2.11!

In QCD parameters, this corresponds toER;N2LQCD. At
this energy the approximation of these as black holes
background flat space breaks down. The precise natur
black holes at larger energies is an interesting question, b
there are such solutions, we expect them to be comple
smeared out over the compact manifoldX. Furthermore, ef-
fects of the AdS geometry surrounding the IR brane beco
important. Finding the shape and properties of such a str
gravity region near the IR brane is a nontrivial problem,
which we now turn.

III. LINEARIZED GRAVITY WITH AN IR BRANE

We would like to understand properties of gravity in t
vicinity of the IR end of the space~2.1!, and at distance
scales larger thanR. In particular, we would like to determin
the nature of possible large black hole solutions at the
boundary. Of course, this is in general a very complica
problem. For solutions with sizes*R, we expect any such
black hole solutions to be uniformly spread over the comp
directions of the internal manifoldX, but their shape in the
other directions should be nontrivial, and, as we will s
their stability is in question. In order to simplify the problem
we work in an effective description in which we neglectX
12600
as
,

at

.
k
k

n

-
n

g

a
ve

-

in
of
if
ly

e
ng

R
d

ct

,

and work about a slice of ordinary AdS space terminated
the infrared atz5R. Of course, this is just a boundary con
dition summarizing the much more complicated underlyi
smooth 10D geometry. The dynamics of this slice can
discussed by introducing an effective tension for an IR bra
at z5R, as in@12#, but that will not be critical to our discus
sion. Even with these simplifications, at present we lack
tools to find nonlinear gravitational solutions correspond
to black holes on branes in AdS space. However, one
nonetheless find useful information about these soluti
from a linearized analysis of gravity, using the followin
simple principle.

Linearization principle. Suppose that a solution to the fu
nonlinear field equations exists. In weak-field regions, th
must exist a corresponding solution of the linearized eq
tions. One can therefore infer general properties of the n
linear solution~assuming it exists! by examining solutions of
the linearized equations.

Of course, it may be that there is a linearized solution
no corresponding nonlinear solution, or there may be m
than one exact solution with the same asymptotic propert
For the present purposes we assume that such violation
existence and uniqueness do not occur.

Using this method, basic structural properties such as
shape and size of the solution can be inferred from the sh
of the linearized solutions. For example, if we are studyin
black hole, we can infer the approximate location and sh
of its horizon by finding the region where the metric pertu
bation from the background geometry~Minkowski, AdS,...!
becomes strong. The corresponding problem of finding bl
holes on a UV brane was treated by a linear analysis
@13,14#, which used this technique to infer the ‘‘pancake
shaped black holes of that case. We next turn to a gen
discussion of the linearized equations, their boundary con
tions, brane stabilization, and conditions under which
linearized approximation fails.

A. Linearized gravitational equations

Our starting point is to consider perturbations about
metric ~2.2!, suppressingX; it is convenient to work using
the ‘‘height’’ coordinatey given by

z5Rey/R. ~3.1!

The perturbed AdS metric takes the form

ds25~11hyy!dy21e22y/R~hmn1hmn!dxmdxn, ~3.2!

where we work with the gauge

hmy50. ~3.3!

This condition does not completely fix the gauge, and
particular allows the gauge transformations

y→y1ay,
~3.4!

xm→xm1am,

with
1-3
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STEVEN B. GIDDINGS PHYSICAL REVIEW D67, 126001 ~2003!
]may1e22y/R]yam50. ~3.5!

Here and in the remainder of the paper we adopt the con
tion that indices on smalld-dimensional quantities (hmn ,
am, etc.! are raised and lowered with the metrichmn . The
resulting gauge redundancy is parametrized by functi
ay(x,y) andbm(x).

There are, furthermore, two possibilities for the allow
ay. We may fix the region in which we are working,y
P(2`,0), and thus demand that gauge transformations
translate the boundary,

ay~0!50. ~3.6!

This gauge, which we refer to as the ‘‘straight gauge,’’ allo
us to transformhyy to depend only onx. If, on the other
hand, we allow gauge transformations that move the bou
ary,

ay~0!5L~x! ~3.7!

for some functionL, then we may completely eliminat
hyy(x). In this gauge, referred to as the ‘‘bent gauge,’’ t
boundary lies aty5L(x). The four-dimensional fields
hyy(x) or L(x) are the present incarnation of the radion fie
familiar from two-brane scenarios. In either case,
y-independent gauge freedom

xm→xm1bm~x! ~3.8!

remains.
Einstein’s equations for a perturbation withhyy50 were

given in @14#; we will find both straight and bent gauges
be useful so we generalize these tohyyÞ0. Letting the
source stress tensor beTMN , defining a modified metric per
turbation

h̄mn5hmn2
1

2
hhmn , ~3.9!

with h5hmnhmn , and working ind11 dimensions, their
perturbations can be shown to be

~]d
2h2]m]nhmn!e2y/R2

d21

R
]yh2

d~d21!

R2 hyy

5
1

M P
d21 Ty

y , ~3.10!

]y]
n~hmn2hhmn!2

d21

R
]mhyy5

Tm
y

M P
d21 , ~3.11!

and

!h̄mn5
hmn

2
eyd/R]y~e2yd/R]yh!1e2y/R~2hmn]l]sh̄ls

1]l]mh̄nl1]l]nh̄ml!1e2y/R~]d
2hyyhmn

2]m]nhyy!1
d21

R
eyd/R]y~e2yd/Rhyy!hmn

2
e2y/R

M P
d21 Tmn ~3.12!
12600
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from the ~yy!, (my), and ~mn! components of Einstein’s
equations, respectively.

B. Boundary conditions and linear approximation

The linearized Einstein equations~3.10!–~3.12! must be
supplemented by boundary conditions. The boundary co
tions in the UV (z50,y52`) are simply that the perturba
tion falls off sufficiently rapidly. Appropriate boundary con
ditions at the IR brane are the Neumann bound
conditions,

nI] Ihmnu]50 ~3.13!

wherenI is the unit outward normal to the boundary. The
can be motivated from orbifold boundary conditions

nI] Ihmnu252nI] Ihmnu1 ~3.14!

about the boundary, or equivalently from the statement t
the gravitational field vanishes at the boundary. In the c
where there is a source localized on the IR brane,

Tmn5Smn~x!d~y!, Tyy5Tym50, ~3.15!

these are modified; integrating Eq.~3.12! over a small neigh-
borhood of the brane gives the Israel matching conditio
@15#. Working in the straight gauge, where the boundary is
y50, and combining the result with Eq.~3.14! gives

]y~hmn2hmnh!uy502
d21

R
hyy~0!hmn5

Smn~x!

2M P
d21 .

~3.16!

Alternatively, these may be transformed to the bent ga
using Eq.~3.7!. The resulting boundary conditions becom

]y~hmn2hmnh!uy5L22]m]nL12hmn]d
2L5

Smn~x!

2M P
d21 .

~3.17!

If we find solutions to the equations~3.10!–~3.12! with
boundary conditions~3.16! or ~3.17!, we have found a valid
approximate solution as long as the metric perturbation
mains small,

hIJ!1. ~3.18!

An additional important condition when working in the be
gauge is that the bending remain small@this was used in
deriving Eq.~3.17!#:

]mL!1. ~3.19!

C. Brane bending and stabilization

If we put a stress tensor of the form~3.15! on the brane, in
general it will bend the brane; this phenomenon was stud
in @13,14#, and we will extend the analysis there to treat t
1-4
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present situation. For example, we will find that~as ex-
pected! a point mass placed on the brane will bend it furth
into the infrared.

However, in typical examples of nonconformal theorie
such as theN51* theory @16#, the brane cannot be at a
arbitrary location, but its position is fixed by the perturbati
away from conformality. In@16#, this stabilization results
from nonvanishing of components of theG flux.1 This has
the effect of giving an effective potential for the location
the brane; in other words, a mass to the ‘‘radion’’ whi
describes shifting the position of the brane. In general
will be summarized in a stress tensorstabTIJ on the right-
hand side of Einstein’s equations~3.10!–~3.12!. If the radion
is very massive, the brane will bend relatively little when t
vacuum solution is perturbed.

In the N51* theory, deformations of the radion are r
lated to fluctuations of the form̂tr f2&. Since the dynamics
of @16# are rather complicated, we will instead use a t
model for radion stabilization, along the lines suggested
Csáki et al. @17# and in@14#, and which can be motivated b
studying properties of the Goldberger-Wise model for rad
stabilization@9#. Specifically, suppose that we work in th
straight gauge, wherehyy5hyy(x)Þ0; in this gauge, fluc-
tuations of the radion correspond to fluctuations ofhyy . A
particularly simple form of the stabilizing stress tensor, co
patible with energy-momentum conservation, is

stabTy
y5m2M P

d21hyy~x!eyd/R,
~3.20!

stabTmI50,

wherem is a constant that is proportional to the mass of
radion. One can think of this as roughly arising from a ‘‘p
tential’’ of the form U5m2(hyy)

2, as in@17#, or derive it in
a limit of the Goldberger-Wise wise model as is discussed
Appendix B. A basic intuition behind the possibility of hav
ing a nonzeroTyy with other components vanishing is that
very stiff spring can exert a large force with little change
its energy.

We will study two limiting cases of such stabilization: th
first mR!1, in which brane bending is the dominant effe
and the second wheremR@1, and brane bending is effec
tively eliminated. Although it may be possible to physica
achieve either limit in more fundamental models, one
pects that commonly the radion mass will take a valuem
;1/R, complicating the analysis. In subsequent sections
will see that a particularly important physical question
whether the radion is the lightest massive mode, or whe
the first Kaluza-Klein mode of the graviton is lighter.

IV. BLACK HOLES ON IR BOUNDARIES?

We would like to study the properties of strongly coupl
gravitational solutions in the vicinity of the IR boundary
the space and specifically search for black holes. The s
plest case is a solution with the symmetries of t

1I thank J. Polchinski for a discussion on this point.
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d-dimensional Schwarzschild solution, namely, SO(d21)
rotation symmetry. We look for a solution with matter sour
on the IR boundary or brane. The long range weak field
such a solution should correspond to the long range w
field of a point mass at the boundary. Thus, from the line
ization principle, we should be able to detect the presenc
a full nonlinear solution and its gross features from study
the linearized equations. Of course, for a given linear so
tion there could be more than one nonlinear solution,
none; to address the former, we assume that there
uniqueness result analogous to Birkhoff’s theorem; if this
not true, then that has other potentially interesting con
quences. And we should also bear in mind that includ
realistic dynamics for other fields besides the radion a
graviton could lead to other richer phenomena.

Therefore, consider a point mass on the boundary,

Smn52mdd21~x!dm
0 dn

0 ~4.1!

~the factor of 2 arises from the orbifold treatment of boun
ary conditions! with a bulk stress tensor that stabilizes t
radion, Eq.~3.20!, but otherwise vanishes. In the next su
sections we will solve for the linearized field of a gene
source on the brane, in the limits of a stiff or soft radion, a
then specialize to the case of such a point mass.

A. The light radion limit

In the casemR!1 we neglect the stabilizing stress tens
entirely. This problem is most easily solved by passing to
bent gauge, withhyy50. The divergence of the (my) Ein-
stein equation~3.11! can then be integrated with respect toy
to find

]m]nhmn5]d
2h1 f ~x! ~4.2!

for unknownf (x). Using this in the~yy! equation~3.10! then
gives

d21

R
]yh52 f ~x!e2y/R. ~4.3!

This is integrated subject to the boundary conditions~3.17!
and those at infinity. Demanding that the field die off
infinity requires thatf [0, and therefore that]yh[0. The
trace of Eq.~3.17! then determines the position of the boun
ary,

]d
2L5

1

4~d21!M P
d21 S~x!. ~4.4!

The (my) equation then implies

]y]
nhmn50, ~4.5!
1-5
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and the gauge freedom~3.8! can then be used to go to tran
verse gauge,

]nh̄mn50. ~4.6!

Thus the~mn! equations reduce to

!hmn50. ~4.7!

This is solved using the Neumann Green’s function for
scalar Laplacian, defined by

!Dd11~X,X8!5
dd11~X2X8!

A2G
,

~4.8!
]yDd11~X,X8!uy5050

with coordinatesX5(x,y) or ~x, z!. Using the boundary con
ditions ~3.17!, the solution is

hmn~X!52
1

2M P
d21 E ddx8A2gDd11~X;0,x8!

3FSmn~x8!2hmn

Sl
l~x8!

d21
1

]m]n

]2

Sl
l~x8!

d21 G .
~4.9!

Specializing to the point mass~4.1!, we first solve for the
radion from Eq.~4.4!, using thed-dimensional Green’s func
tion. The result is

L5
m

2~d21!M P
d21

1

~d23!Vd22r d23 ~4.10!

whereVn is the volume of the unit sphereSn. The metric
can likewise be found using Eq.~4.8!. In particular,

h0052
m

M P
d21

d22

d21 E dt8Dd11~X;0,0W ,t8! ~4.11!

gives the effective scalar potential.
The shape of gravity is thus determined by the sca

Green’s function. This is found in Appendix A, and, for
source on the brane, simplifies to

Dp11~x,z;x,R!52S z

RD d/2E ddp

~2p!d

1

q

Jd/2~qz!

Jd/221~qR!
eip~x2x8!

~4.12!

with q252p2.
While the expression~4.9! is difficult to evaluate explic-

itly, we are particularly interested in the long distance lim
where it simplifies. Specifically, assume thatz!R and/orx
@R. In either case, the integral is then dominated by
region of smallqz, and so we can replace the Bessel fun
tions by a small argument expansion. In particular, in
case of the point mass~4.1!, we find
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h00~X!.
mR

~d21!Md21 S z

RD dE dd21p

~2p!d21

~qR/2!d/221

Jd/221~qR!

3
d22

G~d/211!
eipW •xW. ~4.13!

The denominator has poles whereqR is one of the zeros
j d/221,n of the Bessel functionJd/221 . Therefore we expec
the larger behavior to be dominated by the first pole, a
specifically the potential to take the form

h00.2
km

RMP
d21 S z

RD d e2M1r

r d23 , ~4.14!

wherek is a numerical constant and the mass of the light
Kaluza-Klein mode of the graviton is given by

M15 j d/221,1/R. ~4.15!

Note that, as expected, there is no 1/r d23 falloff in h00,
which would be characteristic ofd-dimensional gravity.
Without an ultraviolet brane, the effectived-dimensional
Planck mass is infinity; in other words, there is no gravit
zero mode.

A sufficiently large point mass might be expected to p
duce a black hole. Specifically, for a given mass, the horiz
would be expected to lie in the region whereh00;21,
namely, whereg00 is expected to vanish, and for sufficient
largem the size of this region would be expected to be larg
than R. However, in the present case one cannot explic
find such a linearized solution. From Eq.~4.10!, we find that
the condition for the radion field to stay linear, Eq.~3.19!, is

r *S m

M P
d21D 1/~d22!

. ~4.16!

In other words, if we concentrate a massm in a region
smaller than that given by this equation, the brane bend
goes nonlinear and forces us to do a nonlinear analysis.
can easily convince oneself that in the present case this
pens beforeh00;21. One might extend this analysis b
solving the nonlinear generalization of Eq.~4.4! and then
find the metric perturbation satisfying Eq.~4.7! in this back-
ground, but we leave this for further work. While there a
strong gravitational effects at radii less than those given
Eq. ~4.16!, and while those may well correspond to bla
hole formation, we cannot presently clearly interpret them
such without treating the physics of the large bending of
boundary.

B. The heavy radion limit

We next solve Einstein’s equations~3.10!–~3.12! in the
stiff limit mR@1. With stabilization present, we work in th
straight gauge. Taking the divergence of the (my) equation
~3.11! and integrating with respect toy gives

]m]nhmn2]d
2h5

d21

R
y]d

2hyy1 f ~x!, ~4.17!
1-6
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again with unknown integration constantf (x). Combining
this with the~yy! equation~3.10! then gives

]yh52ye2y/R]d
2hyy2

R f

d21
e2y/R2

d

R
hyy2

m2R

d21
hyye

yd/R.

~4.18!

This must again be solved with boundary conditions~3.16!
and the field should fall off sufficiently rapidly at infinity.

In the limit of largem, the boundary condition~3.16! at
y50 can be solved by taking

m2Rhyy5
S

2M P
d21 , ~4.19!

which has a solution withhyy;O(1/m2): with a large mass,
the deformation of the radion is small. This is precisely as
the cosmological case in@17#. The boundary condition a
infinity then implies thatf 50. In the stiff limit m→`, we
therefore simply sethyy50, and solve the remaining equa
tions using

]yh5
edy/RS

2~12d!M P
d21 . ~4.20!

Indeed, returning to the (my) equation, we find that up to
a piece that can be gauged away by Eq.~3.8!,

]nh̄mn5
R

4d~12d!M P
d21 edy/R]mS. ~4.21!

The remaining~mn! equation then becomes

!h̄mn5
R

2d~12d!M P
d21 e~d12!y/RS ]m]nS2hmn

]d
2S

2 D .

~4.22!

This final equation is most easily solved by using
transverse-traceless projection; specifically, define the tr
verse projection operator

Pmn5hmn2
]m]n

]d
2 . ~4.23!

Then the transverse-traceless piece ofh is given by

hmn
TT5PmlPnsh̄ls2

1

d21
PmnPlsh̄ls ~4.24!

and is easily shown to satisfy

!hmn
TT50. ~4.25!

The boundary condition is likewise projected and gives

]yhmn
TTu05

1

2M P
d21 S Smn2

1

d21
PmnSD[

Smn
TT

2M P
d21 .

~4.26!

These are again solved using the scalar Green’s function
give
12600
n
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nd

hmn
TT52

1

2M P
d21 E ddx8A2gDd11~X;0,x8!Smn

TT ,

~4.27!

exactly as in Eq.~4.9!. The full metric perturbation is then
easily found to be

hmn5hmn
TT1

]m]n

]d
2 h ~4.28!

with h given by the integral of Eq.~4.20!. In particular, the
linearized potential of a pointlike static source on the bra
is once again given by Eq.~4.11!.

We can again enquire regarding the existence of a bl
hole solution. Asymptotically far from the source,h00 is
again given by the simple form~4.14!. As we approach the
source,h00'21 at a surface given by

M1r 2yd/R. lnF km

RMP
d21r d23G . ~4.29!

This surface is sketched in Fig. 1. We expect that in the ex
solution it is rounded off in a region of size;R surrounding
the summit. Its size grows logarithmically with the massM.
By the linearization principle, this should be the shape of
corresponding black hole horizon. Note that the size of
region, projected onto the infrared boundary, is given by

r h~m!;
1

M1
lnFkmM1

d23

RMP
d21 G . ~4.30!

As pointed out by Susskind@18#, there is a question abou
the existence of stable black holes with this shape; he
argued, in particular, that any such horizon would thermo
namically prefer to sink into the boundary. To make th
more precise, a quick estimate shows that there could
higher entropy solutions with the same conserved ene
This is most easily studied if we imagine that we periodica
identify the flat dimensions so that they have finite volum
V; for simplicity consider the case ofd54. The entropy or
area of the plateau at the summit varies like

A;~e2yplateau/RR!3;R3F km

R2M P
3 G3/4

. ~4.31!

FIG. 1. Shown is a sketch of the strong-gravity region in t
rigid brane limit. This region should be smoothed out in a sum
region of sizeDx;O(R). This curve should give the approximat
shape of a black hole horizon.
1-7
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On the other hand, we might guess that another configura
with the same energy is a black brane, with an energy den
e;m/V. We can estimate the entropy as that of the us
black three-brane solution~see, e.g.,@19#!:

S;ANV1/4m3/4. ~4.32!

In the large volume limit, the black brane entropy is clea
larger.

However, note one critical caveat. Our linearized analy
assumed the existence of a stabilization mechanism. Fo
present discussion of the instability to decay to a black br
to be relevant, there must be a black brane solution to
coupled equations including the stabilizing fields. The qu
tion of the existence of such solutions—which correspo
to the question of finding a finite temperature vacuum of
field theory—has been the subject of some discussion;
e.g., @20#. In some cases it is believed that the field theo
supports no corresponding thermally excited state. Howe
one may check that there is a limit of the Goldberger-W
mechanism asm→0 in which the radion mass stays fixe
but the back reaction of the Goldberger-Wise field at z
radion displacement vanishes. This suggests that such si
models have black brane solutions like those where ther
no stabilization mechanism present. The existence of a st
black brane solution in a general scenario is an interes
and important question that will ultimately determine the fa
of the solutions found in this paper, and different theor
may yield different results.

C. Intermediate radion mass

We now give a general discussion of the case where
radion mass falls between the two limiting cases. In this c
it is more difficult to solve the corresponding coupled equ
tions, but we hope to infer basic properties of the solution2

In this intermediate case, it may be most advantageou
again work in the bent gauge. We can guess the contribu
of the stabilizing stress tensor to the equations of motion
this gauge; in particular, we expect the boundary condit
and equations of motion to give

]d
2L1ML

2L;
S~x!

M P
d21 , ~4.33!

whereML}m is the mass of the radion. Outside a spheri
mass distribution with large massm, we then expect the ra
dion to take the form

L;
m

M P
d21

e2MLr

r d23 . ~4.34!

Now suppose that we take such a mass distribution
gradually compress it; we would like to know what becom

2Note, however, that by a general argument@see@21# Eq. ~62!# it,
is always possible to solve for the transverse-traceless part o
metric given the scalar Green’s function. Solving for the coup
longitudinal, trace, and radion excitations is more complicated.
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important first, large bending, or strong gravity/possible h
rizon formation,hmn;O(1). Obviously this depends on th
relative magnitudes of the radion mass and the mass of
first Kaluza-Klein~KK ! excitation of the graviton. Bending
becomes important when the mass is concentrated in a re
with size given by

mML

M P
d21

e2MLr

r d23 5O~1!. ~4.35!

Other strong-gravity effects such as a horizon would
found where

m

RMP
d21

e2M1r

r d23 5O~1!. ~4.36!

For largem, strong gravity becomes important first ifML
.M1 , and bending goes nonlinear first ifML,M1 . From
the perspective of the dual field theory, this is obvious:
lightest field dominates the dynamics at long distances.

D. Black hole formation in TeV-scale gravity

In the context of TeV-scale gravity, recent work@4,5# has
examined black hole formation and decay in high ene
collisions. In the most optimistic of scenarios such proces
could be visible at the CERN Large Hadron Collider~LHC!.
Once one pushes to energies higher than the fundame
Planck scale, one makes bigger and bigger black holes,
the properties of these black holes might be used to in
aspects of the geometry of the extra dimensions@4#. One
possibility is that the extra dimensions are large and appr
mately flat, in which case the black hole production cro
section at energyE varies as

s;E2/@D~E!23#, ~4.37!

where D(E) is the number of spacetime dimensions lar
compared to the Schwarzschild radius of the black hole
the given energy. Another possibility is that, at large enou
scales, the extra dimensions in the vicinity of our observa
brane take the form of a piece of AdS space, as in the
model of @12# or the string solutions of@22#. In that case,
once one reaches energies large enough to make black
bigger than the AdS radius scale, the cross section is g
by Eq. ~4.30!, and grows logarithmically:

s;R2 ln2F ER

~M PR!d21G . ~4.38!

Of course, the above comments and questions regarding
sible dominance of radion excitations, classical stability
the resulting black holes, etc., would have very importa
phenomenological consequences. It would be particularly
teresting to better understand any instability to black bra
formation more deeply. However, closer investigation
these questions likely requires more detailed constructio

he
d
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V. HIGH ENERGY QCD SCATTERING AND THE
FROISSART BOUND

We now return to investigating aspects of the dual ga
theory description of this physics. Corresponding to differ
solutions, there are various realizations of dual gauge th
ries, but there are some generic features. We expect the
include the presence of the four-dimensional field that co
sponds to the radion, as well as the tower of KK excitatio
of the graviton that we think of as glueballs. In additio
there may be other fields. The subsequent discussion ap
in cases where these other fields do not significantly alter
dynamics.

Polchinski and Strassler@3# investigated the role of bulk
physics in producing partonlike behavior. However, at la
energies we do not expect this to be the dominant phys
From the bulk point of view this is clear: at large energies
cross section for strong gravitational effects, such as bl
holes with sizes given by Eq.~4.30!, grows with energy and
is expected to be a dominant effect in the physics. Indeed
QCD it is also known that the total cross section is not do
nated by hard processes and grows with energy. Let us c
pare these more closely.

As described in Sec. IV C, there are two possible exp
nations for the dominant long distance nonlinear grav
tional behavior: brane bending, or strong gravity effec
such as black hole formation, mediated by the first Kalu
Klein mode of the graviton. Which is dominant depends
the relative magnitude of their masses,m andM1 . However,
in either case, at high center of mass energy, the size o
regions where they become important follows a simple s
ing law. Radion dominant scattering processes should
in at

r L'
1

ML
lnS ML

d22E

M P
d21 D 2

d23

ML
ln lnS ML

d22E

M P
d21 D 1¯ .

~5.1!

KK graviton dominant processes should set in atr;r h as
given in Eq. ~4.30!, or equivalently Eq.~5.1! with ML re-
placed byM1 . In either case one can estimate the size of
scattering cross section,

s;pr L or h
2 , ~5.2!

which gives3

s;
p

ML
2 ln2S ML

d22E

M P
d21 D or s;

p

M1
2 ln2S EM1

d22

M P
d21 D .

~5.3!

In either case we have recovered from bulk physics
log2 E behavior associated with the Froissart bound, which
a general bound following from unitarity.4 To date there has

3Note that @23# also considered this problem, but came to t
different conclusion that the cross section ceases to grow after b
holes reach sizeO(R).

4For a recent review and discussion of the Froissart bou
see@24#.
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been no solid argument that QCD saturates this bound
high energies, although this likelihood has been widely d
cussed.

In hindsight, reproducing this bound is not so surprisi
as it may seem, and in fact is related to an old heuris
argument for saturation given by Heisenberg in 1952@25#.
He argued that a target hadron is surrounded by a pion fi
with energy density;e2mpr , and suggested that inelast
processes will occur when the collision is close enough
locally yield enough energy to create a pion pair. This yie
an estimate

s;
1

mp
2 ln2

E

mp
2 , ~5.4!

similar to the above.
It is amusing to comment that the present discussion s

gests that, via the AdS/conformal field theory~CFT! duality,
the bulk physics ‘‘knows’’ about boundary unitarity, and tha
furthermore, the high energy scattering is approximately
scribed by classical bulk physics.

Note also that, in addition to strong gravitation
scattering/black hole formation in the vicinity of the I
boundary, as the energy increases, formation of black h
above the IR boundary becomes possible. However, fo
given gauge theory energy, the local energy is largest in
vicinity of the brane, and given that the gravitational cro
section rises with energy, it seems plausible that the do
nant processes are those localized near the IR boundary

Of course, we would like to understand more features
the scattering physics. In the radion dominated case,
question depends closely on the dynamics of the rad
whose investigation we leave for future work. In the K
graviton dominated case, the outcome depends intimatel
the stability of nonlinear black hole solutions that would co
respond to the linearized solutions found in the preced
section. There are two possibilities. One is the classical
stability to decay into a black brane. Susskind has sugge
that in this case the gravitational solution would sink into t
IR boundary and spread out, ultimately forming a bla
brane at infinitesimal temperature. The corresponding ga
theory dynamics might be described as formation of a fi
ball that gradually cools as it spreads out and thermaliz
One expects relevant time scales to be given byt;r h . Al-
ternatively, if there is no classical instability, one must co
sider quantum processes. One is tunneling to a black br
if one exists. If this process is sufficiently slow, or if a co
responding black brane solution does not exist, then pla
bly the dominant decay is via Hawking evaporation of t
black hole. Note that this is expected to have a time sc
parametrically larger in the collision energy.

VI. CONCLUSIONS AND OUTLOOK

Understanding high energy scattering behavior in ga
theories has remained a historically challenging proble
This suggests turning the lens of AdS/CFT duality to foc
on it. This paper has argued that a generic phenomeno
the gravitational side, strong gravitational physics such

ck

d,
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black hole formation, could play a central role in the hi
energy physics of the gauge theory. Furthermore, black h
formation at high energies is a nearly classical process:
high center of mass energies, horizons can form at w
curvature@8#, rendering quantum effects subdominant.

Unfortunately we are not yet able to describe the non
ear gravitational solutions relevant to this physics, and to
so probably also requires better knowledge of the bulk str
theory backgrounds, such as that in@16#, in which these pro-
cesses take place. Nonetheless, this paper has present
an ‘‘effective theory’’ approach, an analysis of the linear b
havior of the gravitational field. The linear approximatio
also contains information about its demise, and thus indic
in what regions nonlinear effects are important. In particu
using this approximation, one may estimate high energy s
tering cross sections for gauge theory processes, and d
the s; ln2 E behavior saturating the Froissart bound. Th
suggests that bulk physics in a sense ‘‘knows’’ about bou
ary unitarity—although it is not clear what implications,
any, this has for the problem of bulk unitarity.

This picture also suggests a means to investigate the
sequent evolution of the scattered state, although to do s
detail seems to again require more knowledge of the st
backgrounds and the nonlinear solutions that live in the
and in particular of the stability properties thereof. In o
picture a black hole, once formed, ‘‘melts’’ onto the infrare
boundary. In other configurations, there may even be qua
table black holes~only destabilized by Hawking evapora
tion!; it is very interesting to contemplate properties of t
dual description of such an object in the gauge theory.

Open questions therefore include more thorough exa
nation of these processes in more detailed models. In par
lar, one may start with the gravity dual of theN51* theory
or other analogues. As pointed out, two of the relevant f
tures of the dynamics are the existence of gravity in the b
and of a stabilization mechanism for the position of the
frared boundary, that is, the radion field. It would be int
esting to better understand the relation between the stabi
tion of @16# and the Goldberger-Wise mechanism@9#, and the
question of whether there are more interesting effects bey
those summarized by the effective stabilization stress te
~3.20!. We would like to know what possibilities exist for th
radion mass: are there indeed consistent scenarios with
radion mass exceeding the mass of the first Kaluza-K
mode, so that analogues to black holes can be relevant, a
a large radion mass~as compared to 1/R) possible? We
would like to understand the properties of the resulting n
linear gravitational solutions and to understand whether t
are classically unstable. The latter hinges on the questio
the existence of black brane solutions in the presence of
other fields that provide stabilization and other dynamics;
corresponding question in the gauge theory is whether
theory supports a finite temperature phase. It is certainly c
ceivable that a variety of models result in a variety of diffe
ent effects.

This paper has probably just scratched the surface of
role of strong gravitational effects in their Maldacena du
gauge theories.
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APPENDIX A: SCALAR GREEN’S FUNCTION FOR AdS
SPACE WITH AN INFRARED BRANE

This appendix derives the scalar Neumann Green’s fu
tion in an anti–de Sitter space that has been truncated in
infrared. More general supergravity backgrounds, where
back reactions of other fields are important, will entail mo
complicated generalizations of this correlator.

The Neumann Green’s function is defined to be the so
tion of the equation

!Dd11~X,X8!5
dd11~X2X8!

A2G
, ~A1!

whereX5(z,x) or (y,x), and the boundary condition is

]yDd11~X,X8!uy5050. ~A2!

This may be solved by the ‘‘method of matching,’’ as
@14#. Specifically, the Green’s function solves the homog
neous Laplace equation forz.z8 and for z,z8; these two
solutions may then be matched by integrating Eq.~A1!
across the singularity atz5z8. In order to do so, we work
with the Fourier transform

Dd11~X,X8!5E ddx

~2p!d eip~x2x8!Dp~z,z8!. ~A3!

Solutions to Laplace’s equation come in the form of sup
positions of Bessel functions,zd/2Jd/2(qz), zd/2Yd/2(qz),
with q252p2. We write the general superposition of suc
solutions forz.z8 andz,z8, apply the boundary condition
~A2!, demand that the Green’s function be regular in the U
at z50, and match by integrating Eq.~A1! from z5z82e to
z5z81e. The result is straightforwardly found to be

Dp5
p

2Rd21

~zz8!d/2

Jd/221~qR!
@Yd/2~qz.!Jd/221~qR!

2Jd/2~qz.!Yd/221~qR!#Jd/2~qz,!. ~A4!

The Green’s function~A3! significantly simplifies with
one point on the brane:

Dp11~x,z;x,R!52S z

RD d/2E ddp

~2p!d

1

q

Jd/2~qz!

Jd/221~qR!
eip~x2x8!.

~A5!

We also need the asymptotics of this Green’s function.
either largex or smallz, dominant contributions come from
1-10
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the region withqz!1. This means that we can make a sm
argument expansion inqz to find

Dd11~X;0,x8!.2
1

G~d/211! S z

RD d/2E ddp

~2p!d

1

q S qz

2 D d/2

3
eip~x2x8!

Jd/221~qR!
. ~A6!

In particular, note that the integrand in Eq.~A6! has no
pole atq50—as expected, in this limit the volume is infinit
and there is no massless d-dimensional graviton. It does h
poles at the masses of each of the Kaluza-Klein modes o
graviton. At long distances the integral is dominated by
mass of the lowest Kaluza-Klein mode, corresponding to
first zero of the Bessel function:

M15
j d/221,1

R
. ~A7!

The static Green’s function is obtained by integrating E
~A3! over time. Its asymptotic behavior is given in terms
this mass:

E dt8Dd11~X;0,0W ,t8!. k̂S z

RD d e2M1r

Rrd23 , ~A8!

wherek̂ is a numerical constant.

APPENDIX B: STABILIZATION, GOLDBERGER-WISE
OR OTHERWISE

In this appendix we outline the basics of the Goldberg
Wise mechanism@9#, with particular emphasis on large~in
the limit, infinite! brane separation, and relate it to the sta
lization stress tensor~3.20! used in the text.

We begin by thinking of the situation with AdS spac
truncated by a brane in the IR and one in the UV. The ba
idea of the Goldberger-Wise mechanism is to postulate
existence of a massive bulk field, with Lagrangian

S@f#52
1

2 E dd11XA2G@~¹f!21m2f2#, ~B1!

and such that thevalue of the field is fixed on both the IR
and UV branes.5 Bringing the branes either too close or to
far raises the value of the actionS@f̄# at the corresponding
static solutionf̄ of the equations of motion. This therefor
generates a potential for the radion.

Note that the Goldberger and Wise original analysis
sumedm2.0, but the mechanism works form2,0 @21#.
This is presumably related to the stabilization evident
Polchinski and Strassler’s work, which involves a CFT p
turbation that is relevant, and hence has dimensionD,4,

5Goldberger and Wise actually considered more generally a po
tial for the values off on the boundary, but we omit this unneed
generalization.
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corresponding tom2,0. While we expect the dynamics to b
qualitatively similar, it would be interesting to further eluc
date the precise relationship between the two schemes.

We are interested in applying the mechanism to the l
iting case where the UV brane is moved to infinity. We the
fore generalize the boundary condition at this end of
space to state that, asy→2`,

f→f0~ek2y1Aek1y! ~B2!

for fixed f0 and arbitraryA. Here the exponents are th
familiar quantities

k65
d

2R
6Ad2/4R21m2. ~B3!

The boundary condition aty5L is then taken to bef(L)
5fL , fixing A.

If we compute the action~B1! as a function ofL, we find
the potential

V5
1

2 E dy e2dy/R@~]yf̄ !21m2f̄2#

5
f0

2

2 F d

R
e~k22k1!L22k1

fL

f0
e2k1L

1k1S fL

f0
D 2

e2~k11k2!L1CG , ~B4!

whereC is a cutoff-dependent butL-independent term. This
potential has extrema at

ek2L5
fL

f0

k1
2 6Ak1k2~k1k22k1

2 1k2
2 !

k1
2 2k2

2 . ~B5!

The radion mass, given byV9(L), grows with the massm of
the scalar field; thus the limit of large scalar mass is one w
of motivating the limit of large radion mass used in Se
IV B.

Note that we can also verify the approximate form of t
stress tensor used in Eq.~3.20!. From Eq.~B1! we find

Ty
y}~]yf̄ !22m2f̄2. ~B6!

The L50 vacuum value of this is treated as part of t
background solution. The stabilizing stress arises from
variation of this asL, thusf̄, varies. In particular, we find

]Ty
y

]L
}

]A

]L
@24m212A0~k1

2 2m2!e~k12k2!y#eyd/R.

~B7!

The first term has the expected form of Eq.~3.20!. The sec-
ond term is a correction that has support near the lo
boundary aty50, but otherwise is small, and vanishes in t
limit m→`. It also may be checked that there is a limitm
→`, f0→0, such that the radion mass stays fixed~or goes
to infinity!, but the vacuum back reaction ofTIJ(L50) on
the metric stays small.
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