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High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound
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High-energy scattering in nonconformal gauge theories is investigated using the AdS/conformal field theory
(CFT) dual string-gravity theory. It is argued that strong-gravity processes, such as black hole formation, play
an important role in the dual dynamics. Further information about this dynamics is found by performing a
linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black
hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can
infer a total scattering cross section that grows with center of mass energyEsshturating the Froissart
bound.
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I. INTRODUCTION readily estimate the relevant cross sections based on the ob-
servation that at very high energies black hole formation

A dominant theme in the past few years of string theoryshould be well approximated classicallsee, e.g.[7]). The
has been the conjectured gauge theory—string theory dualitjaive classical estimate of the cross section to produce a
of Maldacend 1]. We are still far from anything approaching black hole,

a proof of this duality, and we face serious challenges on the 5

most interesting question of using it to infer local properties o~mri(E), (1.9

of string theory(see, e.g.[2]), but considerable evidence has

been amassed that one can derive features of gauge thedmperer, is the Schwarzschild radius corresponding to center
from bulk gravitational physics. Much of what was initially of mass energy, is a good guide to the magnitude of these
learned dealt with quantities highly constrained by symme&effects, as has been confirmed by a more detailed recent
tries, such as the mass spectrum, but more recently attentigialysis of classical high energy scatteriBy Because of its
has been turned to investigating dynamical properties of thgrowth—likeE#®~2 in D flat dimensions—this cross section
theory that are not as tightly circumscribed. This has gonds believed to be a dominant feature of high energy gravita-
hand in hand with study of spacetimes corresponding tdional scattering. Now a second obvious question presents
gauge theory vacua with less than the maxiva 4 sym-  itself: What is the role of strong gravity and in particular
metry; these are typically found by deforming the Lagrang-black holes in the dual gauge theory?

ian on the gauge theory side, and correspondingly turning on Indeed, as this paper will argue, our two questions are
non-normalizable modes of bulk fields on the string theoryintimately related. Strong gravitational effects are a dominant
side. A particularly interesting recent example is the work offeature of the high energy gauge theory scattering, and an
Polchinski and Strasslef3], which addresses a glaring estimate analogous to E@..1), using properties of gravity in
puzzle in the correspondence: How is it that string scatteringdeformed AdS backgrounds, yields a high energy cross sec-
which is inherently soft at high energies, reproduces the fation of the form

miliar hard behavior of QCD? By analyzing scattering in the

bulk, they find that the soft behavior of string theory con- 1 In? E
spires with the shape of the bulk wave functions to produce 7" '
the correct power-law behavior. We can now ask what else

we might learn about QCD from the bulk perspective. Onewherem is the mass of the lightest excitation. This behavior
obvious question immediately presents itself: What can ongaturates the Froissart bound, which is implied by unitarity
say about quantities like the total cross section in very highand is believed by many to describe the correct high energy
energy scattering? behavior of QCD.

Another theme that has recently gained interest is that of A more detailed description of the resulting gauge theory
the contribution of strong gravitational effects to high energyphysics remains to be found, but if black hole formation in
scattering. For example, in TeV-scale gravity scenariosthe bulk is the dominant process at high energy, we might
based either on large extra dimensions or on strongly warpeldope to discover the dual physics of Hawking radiation and
spacetimes, black holes should be produced once scatterimgher interesting effects. At present, however, a significant
energies pass the fundamental Planck scale near a TeV, aolistacle appears from questions, raised by Susskind, about
these processes are a very exciting aspect of the phenowhether the relevant gravitational solutions are stable. This is
enology of these modeld,5] (for a review, se¢6]). One can  not crucial for them to produce the cross sectibr®), but it

is critical in determining the subsequent evolution of the
black hole and the corresponding gauge theory dynamics.
*Email address: giddings@physics.ucsb.edu Regardless, it appears that one may be able to think of the
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gauge theory physics as corresponding to a “fireball” thatgenerality take the space to endztR. This choice also

then decays, more or less rapidly depending on these stabiliminates the need for the different string scales discussed in

ity questions, into an approximately thermal state. [3]. Since the scale of the Kaluza-Klein masses is set By 1/
In outline, this paper will first review the basic setup of a (as we will see in more detajland these are interpreted in

truncated AdS space corresponding to nonconformal gaugdée gauge theory as glueballs, this means that the effective

theory, along the lines df3]. This is followed by a discus- QCD scale isA gcp~ 1/R.

sion of the scales relevant to strong gravitational effects. At If we perform scattering in this space, thenservedno-

moderately high energies one expects to produce black holesentum is the gauge theory momentum,

small as compared to the anti—de Sitter radRjsbut at

higher energies these should grow larger tRaMuch of the . d

paper deals with the problem of determining their shape. In Pu="1 Xt 2.3

the full nonlinear theory this is a very difficult problem, but

it is argued that a linear analysis can give substantial inforAs reviewed in[3], we can simply relate glueball scattering

mation about the shape of such solutions. The basic lineaamplitudes to bulk scattering as follows. An incoming glue-

equations and boundary conditions are given in Sec. lll. Aall state has a bulk wave function of the rough form

critical role is played by the dynamics that stabilizes the , ,

infrared end of the spacghe “radion”), and Sec. IV pre- P~ePf(Z/R)g(y"). 2.9

sents a linear analysis of gravity for both small and large ) .

radion masses. In particular, in the heavy radion limit solu-1€ré g represents modes of the internal manifold and

tions are found that correspond to the far field of an objecf (Z/R) gives the radial wave function in AdS space. The

that could be a black hole. In either limit of the radion mass Wave fur;chons are exactly of this form in a space that is

one finds cross-section estimates of the fain®). Section AdSsXS’ truncated by an infrared boundaryzt R, but in

IV also briefly comments on the relevance of this physics todeneral the underlying smooth physics and deformation from

TeV-scale gravity scenarios in which the extra dimension€'dS space will lead to additional mixing. The scattering am-

may be approximated by a slice of AdS space. Section \Plitudes take the form

contains further discussion of the dual gauge theory physics,

and Sec. VI presents conclusions and several open questions. 4 ép):J d% = GAyu(x* Y 2] ¢;. (2.5

There are two appendixes: one that derives the Green’s func- gaug [

tion for anti-de Sitter space truncated by an infrared

boundary_or brane_and another on Stabilization mechaDetaiIS Of the exact form Of the wave fUnCtionS are not

nisms such as that of Goldberger and Wj§é and their ~needed for our very general purposes, but they generically

effective description in geometries whose only boundary id1ave large support in the vicinity of the IR boundary. The

in the infrared. bulk amplitudes depend on thgoper momentum as mea-
sured by a local observer, which for a given conserved mo-
Il. GAUGE THEORY SCATTERING AND TRUNCATED mentum is a function o
AdS SPACE ,
On the gauge theory side, we are interested in high energy Pu(D)= g Pu- (2.6

scattering in a largdN /=4 supersymmetric gauge theory
with broken conformal symmetry and partially broken super-Note that with our conventiorig,=p,, at the IR boundary.
symmetry. Following Polchinski and Strass[&], we will There are several interesting thresholds that we encounter
assume that on the gravity side, this is dual to a supergravitsgs we consider scattering at increasing energies. The first is
(or, more precisely, superstringolution with warped metric the threshold for scattering in which intermediate string
_ _2A) , e states are important. This threshold ipat1/y/e’. At higher
ds?=e?AY 7y, dx“dx"+gn,(y)dy™dy (20 energies, the proper energy reaches this scale at a radius

that is approximately of AdS type in a large region, namely,glven by
R? R ;
ds’~ 7 (dZ+ 7,,dx“dx") + R*ds;, (2.2) Zsal™ 2.7

whereX is some appropriate compact manifold. HBris the It is this scattering physics that is important for the ampli-
AdS radius, and in terms of gauge theory parameters satisfiggdes studied if3]. However, there are other potentially
the approximate relatioR*~g?Na'2. In particular, at long important effects that3] does not include.

distances we can effectively think of the smooth geometry Specifically, we know that once proper energies pass the
given by Eq.(2.1) as being truncated in the infrared; in some 10D Planck scaléMp~g; ¥¥\/a’, gravity becomes strong
situations it is convenient to think of an “infrared brane” as and in particular black holes can form. These may initially be
lying at this end of the space. Referen@¢takes the IR end best described as highly excited string states, but by the
of the space to lie at an arbitrazy but by an overall rescal- string correspondence princip[d.0] we expect a smooth
ing of coordinatesz—\z, x—AXx we can without loss of crossover from intermediate string states to intermediate
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black hole states at the correspondence sc@lg and work about a slice of ordinary AdS space terminated in
~g.%l\Ja'. This physics is thus relevant fa=Mp. If the  the infrared az=R. Of course, this is just a boundary con-
AdS radius(and other geometrical scajeare much larger dition summarizing the much more complicated underlying
than the Planck length, these black holes can be thought of &nooth 10D geometry. The dynamics of this slice can be
essentially living in flat space. As we go to higher energiesdiscussed by introducing an effective tension for an IR brane
two things happen. First, one can make black holes aatz=R, as in[12], but that will not be critical to our discus-
smaller values of, further into the UV region of the geom- sion. Even with these simplifications, at present we lack the
etry. Any real(as opposed to virtupblack holes of this form tools to find nonlinear gravitational solutions corresponding
would of course be unstable to falling toward the boundaryto black holes on branes in AdS space. However, one can
But, perhaps more importantly, one can make larger blackionetheless find useful information about these solutions
holes. Indeed, for given energy, the radius of a 10D blackrom a linearized analysis of gravity, using the following
hole grows as simple principle.
Linearization principle Suppose that a solution to the full
thEW, (2.9 nonlinear field equations exists. In weak-field regions, there
. ._must exist a corresponding solution of the linearized equa-
and consequently the cross section for black hole producnoHons_ One can therefore infer general properties of the non-
at the IR end of the space grows as linear solution(assuming it exisisby examining solutions of
o~E27 (2.9 the Iinearized_equations. _ _ _ _
Of course, it may be that there is a linearized solution but
In terms of QCD parametersMp~N1’4AQCD and E, no corresponding nonlinear solution, or there may be more
NNZAQCD/(gzN)7/4- Above these energies, one expects posihan one exact solution with the same asymptotic properties.
sibly interesting consequences of the black hole formatiod or the present purposes we assume that such violations of
for QCD scattering. One is the power-law growgh9). An-  existence and uniqueness do not occur.
other comes from the energy dependence of the Hawking Using this method, basic structural properties such as the

temperature of a 10D black hole: shape and size of the solution can be inferred from the shape
of the linearized solutions. For example, if we are studying a
Ty~E~ Y. (2.10  black hole, we can infer the approximate location and shape

of its horizon by finding the region where the metric pertur-
As is typical in black hole physics, this corresponds to apation from the background geometiilinkowski, AdS,..)

negative specific heat. Further aspects of this regime havgecomes strong. The corresponding problem of finding black
been explored by Dimopoulos, Emparan, and Susskifii ~ holes on a UV brane was treated by a linear analysis in

As the energy grows further, the black hole size ap{13 14, which used this technique to infer the “pancake”
proaches the AdS radius. This occurs at an energy shaped black holes of that case. We next turn to a general
87 discussion of the linearized equations, their boundary condi-

Er~MpR". (2.1 tions, brane stabilization, and conditions under which the

In QCD parameters, this correspondsEtQ~N2AQCD. At linearized approximation fails.

this energy the approximation of these as black holes in . ) o .

background flat space breaks down. The precise nature of A. Linearized gravitational equations

black holes at larger energies is an interesting question, but if Qur starting point is to consider perturbations about the
there are such solutions, we expect them to be completelghetric (2.2), suppressing; it is convenient to work using
smeared out over the compact manifddFurthermore, ef-  the “height” coordinatey given by

fects of the AdS geometry surrounding the IR brane become

important. Finding the shape and properties of such a strong z=Re'R, (3.1
gravity region near the IR brane is a nontrivial problem, to ,
which we now turn. The perturbed AdS metric takes the form

ds?=(1+h,,)dy?+e 2R +h, )dx*dx*, (3.2
I1l. LINEARIZED GRAVITY WITH AN IR BRANE ( ) dy (Dt ) 3.2

We would like to understand properties of gravity in the where we work with the gauge

vicinity of the IR end of the spacé€?.1), and at distance h =0 3.3
scales larger thaR. In particular, we would like to determine #y= '

the nature of possible Iz_‘;xrge _black hole solutions at t.he IRrhis condition does not completely fix the gauge, and in
boundary. Of course, this is in general a very compI|c:atecb<,:1rticu|ar allows the gauge transformations
problem. For solutions with sizes R, we expect any such

black hole solutions to be uniformly spread over the compact y—y+a?,
directions of the internal manifol®, but their shape in the (3.4)
other directions should be nontrivial, and, as we will see, XM —s XM 4

their stability is in question. In order to simplify the problem,
we work in an effective description in which we neglett with
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aﬂay+e—2y/Ray%=o_ (3.5  from the (yy), (ny), and (uv) components of Einstein’s
equations, respectively.

Here and in the remainder of the paper we adopt the conven-
tion that indices on smalti-dimensional quantitiesh(,,,,
a, etc) are raised and lowered with the metrig,,. The _ _ o _
resulting gauge redundancy is parametrized by functions The linearized Einstein equatiort8.10—(3.12 must be
a¥(x,y) and B¥(X). supplemented by boundary conditions. The boundary condi-

There are, furthermore, two possibilities for the allowedtions in the UV ¢=0y= —«) are simply that the perturba-
V. We may fix the region in which we are Working, tion falls off Sufﬁciently rapldly Appropriate boundal’y con-
e (—,0), and thus demand that gauge transformations ndiitions at the IR brane are the Neumann boundary
translate the boundary, conditions,

a¥(0)=0. (3.6) n'gh,,|,=0 313

This gauge, which we refer to as the “straight gauge,” allows
us to transformh,, to depend only orx. If, on the other
hand, we allow gauge transformations that move the boun
ary,

B. Boundary conditions and linear approximation

wheren' is the unit outward normal to the boundary. These
gan be motivated from orbifold boundary conditions

Ct’y(O):L(X) (37) nI&Ih,uV|7:_nl’9lh,uv|+ (314)
for some functionL, then we may completely eliminate about the boundary, or equivalently from the statement that
hyy(X). In this gauge, referred to as the “bent gauge,” thethe gravitational field vanishes at the boundary. In the case
boundary lies aty=L(x). The four-dimensional fields Where there is a source localized on the IR brane,

h,,(x) or L(x) are the present incarnation of the radion field

familiar from two-brane scenarios. In either case, the T,,=S,.(x)a(y), Ty=T,,=0, (3.19

y-independent gauge freedom
these are modified; integrating E®.12 over a small neigh-

XH—xk+ BH(X) (3.9 borhood of the brane gives the Israel matching conditions
remains. [15]. Working in the straight gauge, where the boundary is at
Einstein’'s equations for a perturbation witf),=0 were ~Y=0, and combining the result with E(3.14 gives
given in[14]; we will find both straight and bent gauges to

: - d-1 S, (X)
be useful so we generalize these hg,#0. Letting the ah —n Ml — he (0 =
source stress tensor g,y , defining a modified metric per- Y= 1ly=0= 5=y (017, VR
turbation (3.19
— 1
h,,=h,,— Ehmw, (3.9  Alternatively, these may be transformed to the bent gauge
using Eq.(3.7). The resulting boundary conditions become
with h=%*"h,,, and working ind+1 dimensions, their S, .(X)
perturbations can be showndto be i dy(h,,— myh)|y=L—2<7M<9V|—+Zmﬁﬁl-: ZLI\/IE',’_l'
-1 (d-1)
(95h—a#a"h,,,)e?'R— dyh——mr—hyy (3.17
1 If we find solutions to the equation8.10—(3.12 with
=—3 T, (3.10  boundary condition$3.16 or (3.17), we have found a valid
Mp approximate solution as long as the metric perturbation re-
d—1 T mains small,
ayd"(h,,—hy,)— ——d,h=—d—7, (3.1D
e R Y Mp hy<1. (3.18
and An additional important condition when working in the bent
= _ v _yaR, (a-ydiR 2R, N o gauge is that the bending remain smfdhis was used in
Oh,.,= 2 © dy(e dyh) + % (= 7,,0° 9Ny, deriving Eq.(3.17)]:
+ M h ) + e R(dghyym,, d,L<1. (3.19
)+ ot eraRy (o vIRy, ) - izt
wZrilyy R y yy) Tuv C. Brane bending and stabilization
2yIR If we put a stress tensor of the forf®.15 on the brane, in
e o e .
——=T,., (3.12  general it will bend the brane; this phenomenon was studied
Mp = # in [13,14], and we will extend the analysis there to treat the
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present situation. For example, we will find th@s ex- d-dimensional Schwarzschild solution, namely, 86(1)
pected a point mass placed on the brane will bend it furtherrotation symmetry. We look for a solution with matter source
into the infrared. on the IR boundary or brane. The long range weak field of

However, in typical examples of nonconformal theories,such a solution should correspond to the long range weak
such as theN=1* theory[16], the brane cannot be at an field of a point mass at the boundary. Thus, from the linear-
arbitrary location, but its position is fixed by the perturbationization principle, we should be able to detect the presence of
away from conformality. In[16], this stabilization results a full nonlinear solution and its gross features from studying
from nonvanishing of components of ti@ flux.! This has the linearized equations. Of course, for a given linear solu-
the effect of giving an effective potential for the location of tion there could be more than one nonlinear solution, or
the brane; in other words, a mass to the “radion” which none; to address the former, we assume that there is a
describes shifting the position of the brane. In general thisiniqueness result analogous to Birkhoff’'s theorem; if this is
will be summarized in a stress tens¥#T,; on the right- not true, then that has other potentially interesting conse-
hand side of Einstein’s equatiof3.10—(3.12. If the radion = quences. And we should also bear in mind that including
is very massive, the brane will bend relatively little when therealistic dynamics for other fields besides the radion and
vacuum solution is perturbed. graviton could lead to other richer phenomena.

In the N=1* theory, deformations of the radion are re- Therefore, consider a point mass on the boundary,
lated to fluctuations of the forrtr ¢2). Since the dynamics
of [16] are rather complicated, we will instead use a toy _ 1
model for radion stabilization, along the lines suggested by SW—Zméd 005288
Csi et al.[17] and in[14], and which can be motivated by
studying properties of the Goldberger-Wise model for radionthe factor of 2 arises from the orbifold treatment of bound-
stabilization[9]. Specifically, suppose that we work in the ary conditiong with a bulk stress tensor that stabilizes the
straight gauge, wherk,,=h,,(x)#0; in this gauge, fluc- radion, Eq.(3.20, but otherwise vanishes. In the next sub-
tuations of the radion correspond to fluctuationshgf. A sections we will solve for the linearized field of a general
particularly simple form of the stabilizing stress tensor, com-source on the brane, in the limits of a stiff or soft radion, and

4.9

patible with energy-momentum conservation, is then specialize to the case of such a point mass.
d-1
Stabr;/=,u,2|\/| 2 hyy(X)eyd/R, . . o
(3.20 A. The light radion limit
sbr =0, In the caseuR<1 we neglect the stabilizing stress tensor

entirely. This problem is most easily solved by passing to the
wherep is a constant that is proportional to the mass of thebent gauge, witth,,=0. The divergence of theuly) Ein-
radion. One can think of this as roughly arising from a “po- stein equatior{3.11) can then be integrated with respectyto
tential” of the form U= u?(hy,)?, as in[17], or derive itin  to find
a limit of the Goldberger-Wise wise model as is discussed in
Appendix B. A basic intuition behind the possibility of hav- J*9"h,,, = dgh+f(x) (4.2
ing a nonzerar , with other components vanishing is that a
very stiff spring can exert a large force with little change in
its energy.

We will study two limiting cases of such stabilization: the
first uR<1, in which brane bending is the dominant effect,
and the second whergR>1, and brane bending is effec- d-1 2yIR
tively eliminated. Although it may be possible to physically R Hh=—fx)e™ (4.3
achieve either limit in more fundamental models, one ex-
pects that commonly the radion mass will take a value
~1/R, complicating the analysis. In subsequent sections wdhis is integrated subject to the boundary conditi¢id?)
will see that a particularly important physical question isand those at infinity. Demanding that the field die off at
whether the radion is the lightest massive mode, or whethenfinity requires thatf=0, and therefore tha#z h=0. The
the first Kaluza-Klein mode of the graviton is lighter. trace of Eq(3.17) then determines the position of the bound-

ary,

for unknownf (x). Using this in thelyy) equation(3.10 then
gives

IV. BLACK HOLES ON IR BOUNDARIES?

We would like to study the properties of strongly coupled
gravitational solutions in the vicinity of the IR boundary of
the space and specifically search for black holes. The sim-
plest case is a solution with the symmetries of theT

1
21
(9d|_— WS(X) (4.4

he (wy) equation then implies

Y| thank J. Polchinski for a discussion on this point. dyd*h,,=0, (4.5
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and the gauge freedo(8.8) can then be used to go to trans- mR z\9( d"'p (qRI2¥* !
verse gauge, hoo(X)= (d—l)Mdl(ﬁ) f (2m)9 1 J4o-1(aR)
"h,,=0. (4.6) -2 % 4.13

X—
_ r(dr+1)°
Thus the(uvr) equations reduce to
The denominator has poles wheg® is one of the zeros
Oh,,=0. (4.7 jyp 1, Of the Bessel functiody, ;. Therefore we expect

o _ _ the larger behavior to be dominated by the first pole, and
This is solved using the Neumann Green’s function for thespecifically the potential to take the form

scalar Laplacian, defined by

km [z|\9e M
Dy x) = XX Noo= " Rz T\R) T 419
4.8 wherek is a numerical constant and the mass of the lightest
9 Ags (X, X)]y—o=0 ' Kaluza-Klein mode of the graviton is given by
y=d+1tM y=0"

M1=]gp-11/R. (4.19

Note that, as expected, there is no/ falloff in hgg,
1 which would be characteristic ofl-dimensional gravity.
hw(x):__de d9%’' = gA 4. 1(X;0x") Without an ultraviolet brane, the effectivé-dimensional
2Mp Planck mass is infinity; in other words, there is no graviton

with coordinatesX=(x,y) or (X, 2. Using the boundary con-
ditions (3.17), the solution is

N Aoy zero mode.
S,,(x)—7 Sy(x") %zﬁv Si(x) . A sufficiently large point mass might be expected to pro-
. “d—1 9 d-1 duce a black hole. Specifically, for a given mass, the horizon
(4.9 would be expected to lie in the region whehgy~—1,
namely, whereyy is expected to vanish, and for sufficiently
Specializing to the point magg.1), we first solve for the largemthe size of j[his region would be expected to be Iqrger
radion from Eq.(4.4), using thed-dimensional Green’s func- thanR. However, in the present case one cannot explicitly

tion. The result is find such a linearized solution. From Ed.10, we find that
the condition for the radion field to stay linear, £§.19, is
m 1
L= - s 4.1 m | Md=2)
2d-DOME T (@30, e 410 = W—l) (.16
P

where (), is the volume of the unit spher®". The metric ) ) )
can likewise be found using E¢4.9). In particular, In other words, if we concentrate a massin a region
smaller than that given by this equation, the brane bending

m d—2 _ goes nonlinear and forces us to do a nonlinear analysis. One
hgo=— VT d—_lf dt'Ay.1(X;0,0,t") (4.1  can easily convince oneself that in the present case this hap-
P pens beforehgg~—1. One might extend this analysis by
solving the nonlinear generalization of E@.4 and then
find the metric perturbation satisfying E@.7) in this back-
bround, but we leave this for further work. While there are
strong gravitational effects at radii less than those given by
Eqg. (4.16, and while those may well correspond to black
92 iy 1 Ju.(q2) hole formation, we cannot presently clearly interpret them as
Ay, (X,ZX,R) = — (_) pd - _Yad giP(x=x") such without treating the physics of the large bending of the
P R (2m)% g Jgi2-1(AR) w1z boundary.

gives the effective scalar potential.

The shape of gravity is thus determined by the scala
Green'’s function. This is found in Appendix A, and, for a
source on the brane, simplifies to

with gq?= —p2. B. The heavy radion limit

While the expressior4.9) is difficult to evaluate explic- We next solve Einstein’s equatiori8.10—(3.12 in the
itly, we are particularly interested in the long distance limit stiff limit wR>1. With stabilization present, we work in the
where it simplifies. Specifically, assume tlla€R and/orx  straight gauge. Taking the divergence of they] equation
>R. In either case, the integral is then dominated by thg3.11) and integrating with respect tpgives
region of smallgz and so we can replace the Bessel func- do1
tions by a small argument expansion. In particular, in the Y S
case of the point magg.1), we find 99" — Igh= R ydahyy+1(x), (4.17
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again with unknown integration constahfx). Combining
this with the(yy) equation(3.10 then gives
d w’R

R
_ 2y/IR 12 2y/R
dh=—ye” &dhyy——ey —ﬁhyy—m

d/R
v -1 hy,e’“".

(4.18

This must again be solved with boundary conditi¢BsL6
and the field should fall off sufficiently rapidly at infinity.

In the limit of large u, the boundary conditiori3.16) at
y=0 can be solved by taking

S
2R —
mRhyy PIVERS

(4.19

which has a solution wit,,,~ O(1/u?): with a large mass,
the deformation of the radion is small. This is precisely as in
the cosmological case ifl7]. The boundary condition at

infinity then implies thatf =0. In the stiff limit x— o, we

PHYSICAL REVIEW D 67, 126001 (2003

Strong gravity region

IR brane X

FIG. 1. Shown is a sketch of the strong-gravity region in the
rigid brane limit. This region should be smoothed out in a summit
region of sizeAx~O(R). This curve should give the approximate
shape of a black hole horizon.

1
hin=— 2—Mg—1j d%'V=gA g, 1(X;0X)S)],,
(4.27

exactly as in Eq(4.9. The full metric perturbation is then

therefore simply seh,,=0, and solve the remaining equa- easily found to be

tions using

edy/RS

3yh= 2(1——d)|\/|g__l (4.20

Indeed, returning to theuly) equation, we find that up to

a piece that can be gauged away by E19),

a'h, = R e®Ry S

(4.21

The remaining(uv) equation then becomes

_ R 43S
Oh, = <d+2>y/R( _ _)
#=2d(1-dmE 1 TudrS™ M

(4.22

d,0

_WTTy Zu%
h=hy+ =25"h
d

(4.28

with h given by the integral of Eq4.20. In particular, the
linearized potential of a pointlike static source on the brane
is once again given by Ed4.11).

We can again enquire regarding the existence of a black
hole solution. Asymptotically far from the sourchgg is
again given by the simple forrt#.14). As we approach the
sourcehgg~—1 at a surface given by

Mr—yd/R=In (4.29

m

This surface is sketched in Fig. 1. We expect that in the exact

This final equation is most easily solved by using asp|ution it is rounded off in a region of sizeR surrounding
transverse-traceless projection; specifically, define the tranghe summit. Its size grows logarithmically with the mads

verse projection operator

du9,
Hl“’: 7]#,/— 7 (423)
d
Then the transverse-traceless piecdr @§ given by
W= [T, = —— 1T (42
v ttuntlve - m uvtine ( . 4)
and is easily shown to satisfy

Oh,=0. (4.25

The boundary condition is likewise projected and gives
1 1 TT

ohT o =gt - —1I1I =

y ,u,V|O 2MP71 S/.LV d—1 /.LVS ZMpfl

(4.26

These are again solved using the scalar Green’s function and

give

By the linearization principle, this should be the shape of the
corresponding black hole horizon. Note that the size of the
region, projected onto the infrared boundary, is given by

kmmd—3

W . (4.30

1
rh(m)~M—lIn

As pointed out by Susskind 8], there is a question about
the existence of stable black holes with this shape; he has
argued, in particular, that any such horizon would thermody-
namically prefer to sink into the boundary. To make this
more precise, a quick estimate shows that there could be
higher entropy solutions with the same conserved energy.
This is most easily studied if we imagine that we periodically
identify the flat dimensions so that they have finite volume
V; for simplicity consider the case af=4. The entropy or
area of the plateau at the summit varies like

3/4

km
A~ (e YpaealRR)3~ R3[ (4.30)

R?M3
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On the other hand, we might guess that another configuratioimportant first, large bending, or strong gravity/possible ho-
with the same energy is a black brane, with an energy densitsizon formation,h,,~O(1). Obviously this depends on the
e~m/V. We can estimate the entropy as that of the usuatelative magnitudes of the radion mass and the mass of the
black three-brane solutiofsee, e.g.[19]): first Kaluza-Klein (KK) excitation of the graviton. Bending

becomes important when the mass is concentrated in a region
S~ NVY¥4m34, (432  with size given by

In the large volume limit, the black brane entropy is clearly
larger.

However, note one critical caveat. Our linearized analysis
assumed the existence of a stabilization mechanism. For the
present discussion of the instability to decay to a black bran®ther strong-gravity effects such as a horizon would be
to be relevant, there must be a black brane solution to théound where
coupled equations including the stabilizing fields. The ques-

mM, e M
MaT a3 O(1). (4.35
P

tion of the existence of such solutions—which corresponds m e M
to the question of finding a finite temperature vacuum of the RMEI 703 =0(1). (4.36
P

field theory—has been the subject of some discussion; see,

e.g.,[20]. In some cases it is believed that the field theory

supports no corresponding thermally excited state. HoweveFor largem, strong gravity becomes important first M
one may check that there is a limit of the Goldberger-Wise>M, and bending goes nonlinear firstM _<M;. From
mechanism asn—0 in which the radion mass stays fixed the perspective of the dual field theory, this is obvious: the
but the back reaction of the Goldberger-Wise field at zerdightest field dominates the dynamics at long distances.
radion displacement vanishes. This suggests that such simple
models have black brane solutions like those where there is
no stabilization mechanism present. The existence of a stable ]
black brane solution in a general scenario is an interesting [N the context of TeV-scale gravity, recent wdek5] has
and important question that will ultimately determine the fate€xamined black hole formation and decay in high energy

of the solutions found in this paper, and different theoriescollisions. In the most optimistic of scenarios such processes
may y|e|d different results. could be visible at the CERN Large Hadron CO”|dEHC)

Once one pushes to energies higher than the fundamental
Planck scale, one makes bigger and bigger black holes, and
the properties of these black holes might be used to infer
We now give a general discussion of the case where thgspects of the geometry of the extra dimensipdls One
radion mass falls between the two limiting cases. In this casgossibility is that the extra dimensions are large and approxi-

it is more difficult to solve the corresponding coupled equa-mately flat, in which case the black hole production cross
tions, but we hope to infer basic properties of the solutfons. section at energ¥ varies as

In this intermediate case, it may be most advantageous to
again work in the bent gauge. We can guess the contribution o~E2PE) 3] (4.37)
of the stabilizing stress tensor to the equations of motion in

this gauge; in particular, we expect the boundary conditionyhere D(E) is the number of spacetime dimensions large

D. Black hole formation in TeV-scale gravity

C. Intermediate radion mass

and equations of motion to give compared to the Schwarzschild radius of the black hole at
S(x) the given energy. Another possibility is that, at large enough

FAL+MEL~ _dx__ (4.33  scales, the extra dimensions in the vicinity of our observable

P brane take the form of a piece of AdS space, as in the toy

. ) . ~ model of[12] or the string solutions of22]. In that case,
whereM, = u is the mass of the radion. Outside a sphericalpnce one reaches energies large enough to make black holes
mass distribution with large mass, we then expect the ra- pjgger than the AdS radius scale, the cross section is given

dion to take the form by Eq.(4.30, and grows logarithmically:
m e M ER
L~—g — . 4.3
M-I a3 (4.34 o~R2In2 MR (4.38

Now suppose that we take such a mass distribution and

gradually compress it; we would like to know what becomesOf course, the above comments and questions regarding pos-

sible dominance of radion excitations, classical stability of

the resulting black holes, etc., would have very important

Note, however, that by a general argumgsee[21] Eq. (62)] it, phenomenological consequences. It would be particularly in-

is always possible to solve for the transverse-traceless part of thgresting to better understand any instability to black brane

metric given the scalar Green’s function. Solving for the coupledformation more deeply. However, closer investigation of

longitudinal, trace, and radion excitations is more complicated. these questions likely requires more detailed constructions.
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V. HIGH ENERGY QCD SCATTERING AND THE been no solid argument that QCD saturates this bound at
FROISSART BOUND high energies, although this likelihood has been widely dis-
cussed.

We now return to investigating aspects of the dual gauge

oo X . : . In hindsight, reproducing this bound is not so surprising
theory description of this physics. Corresponding to d|1‘ferentas it may seem, and in fact is related to an old heuristic

solutions, there are various realizations of dual gauge thea- ument for saturation given by Heisenberg in 1953

! . r
res, but there are some generic fgaturgs. We expect theseﬁ%g argued that a target hadron is surrounded by a pion field
include the presence of the four-dimensional field that corre-

. .~ “with energy density~e ™+", and suggested that inelastic
2?2Egs t%\t/ri]tir:aﬁ[?]'g{] ,Waes tvr\:ienIII(antztsa tol\l’Jv:tr);)I];SKlfneggléﬁg)r?sprocesses will occur when the collision is close enough to

9 ' 9 o : ..locally yield enough energy to create a pion pair. This yields
there may be other fields. The subsequent discussion apph%% estimate
in cases where these other fields do not significantly alter the

dynamics. 1 E
Polchinski and Strassl¢B] investigated the role of bulk o~ —In*—, (5.4)
physics in producing partonlike behavior. However, at large mz Mz

energies we do not expect this to be the dominant physics.

From the bulk point of view this is clear: at large energies theSimilar to the above.

cross section for strong gravitational effects, such as black It is amusing to comment that the present discussion sug-

holes with sizes given by E¢4.30, grows with energy and  gests that, via the AdS/conformal field thedGFT) duality,

is expected to be a dominant effect in the physics. Indeed, ithe bulk physics “knows” about boundary unitarity, and that,

QCD it is also known that the total cross section is not domifurthermore, the high energy scattering is approximately de-

nated by hard processes and grows with energy. Let us congcribed by classical bulk physics.

pare these more closely. Note also that, in addition to strong gravitational
As described in Sec. IV C, there are two possible explascattering/black hole formation in the vicinity of the IR

nations for the dominant long distance nonlinear gravitaboundary, as the energy increases, formation of black holes

tional behavior: brane bending, or strong gravity effects,above the IR boundary becomes possible. However, for a

such as black hole formation, mediated by the first Kaluzagiven gauge theory energy, the local energy is largest in the

Klein mode of the graviton. Which is dominant depends onvicinity of the brane, and given that the gravitational cross

the relative magnitude of their massgsandM ;. However, ~ Section rises with energy, it seems plausible that the domi-

in either case, at high center of mass energy, the size of th@ant processes are those localized near the IR boundary.

regions where they become important follows a simple scal- Of course, we would like to understand more features of

ing law. Radion dominant scattering processes should séfe scattering physics. In the radion dominated case, this

in at question depends closely on the dynamics of the radion,
whose investigation we leave for future work. In the KK

1 (M{’E| d-3 M{~%E graviton dominated case, the outcome depends intimately on
= M—Lln VESEN AN Inin VIS the stability of nonlinear black hole solutions that would cor-

(5.1)  respond to the linearized solutions found in the preceding
section. There are two possibilities. One is the classical in-
KK graviton dominant processes should set inratr, as  stability to decay into a black brane. Susskind has suggested
given in Eq.(4.30, or equivalently Eq.(5.1) with M_ re-  that in this case the gravitational solution would sink into the
placed byM, . In either case one can estimate the size of theR boundary and spread out, ultimately forming a black
scattering cross section, brane at infinitesimal temperature. The corresponding gauge
theory dynamics might be described as formation of a fire-

,\, 2
T or o (5.2 ball that gradually cools as it spreads out and thermalizes.
which giveg One expects relevgnt time sca_lles to be _givertbyh. Al-
ternatively, if there is no classical instability, one must con-
T, ME’ZE T, EM‘l’*2 sider quantum processes. One is tunneling to a black brane,
o~ W'“ ™MIT or o~ —3In ™I if one exists. If this process is sufficiently slow, or if a cor-
L P 1 P

(5.3 responding i_)lack brane s_olu_tion doe_s not exist, then plausi-
bly the dominant decay is via Hawking evaporation of the

In either case we have recovered from bulk physics thdlack hole. Note that this is expected to have a time scale

log? E behavior associated with the Froissart bound, which igparametrically larger in the collision energy.

a general bound following from unitarifyTo date there has

VI. CONCLUSIONS AND OUTLOOK

*Note that[23] also considered this problem, but came to the ~Understanding high energy scattering behavior in gauge
different conclusion that the cross section ceases to grow after bladkieories has remained a historically challenging problem.

holes reach siz&(R). This suggests turning the lens of AAS/CFT duality to focus
“For a recent review and discussion of the Froissart boundpn it. This paper has argued that a generic phenomenon on
see[24]. the gravitational side, strong gravitational physics such as
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theory backgrounds, such as thaf1®], in which these pro-

cesses ta_ke place. Nonetheless, this paper has p_resented, KPPENDIX A: SCALAR GREEN'S EUNCTION EFOR AdS

an “effective theory” approach, an analysis of the linear be- SPACE WITH AN INFRARED BRANE

havior of the gravitational field. The linear approximation

also contains information about its demise, and thus indicates This appendix derives the scalar Neumann Green’s func-

in what regions nonlinear effects are important. In particulartion in an anti—de Sitter space that has been truncated in the

using this approximation, one may estimate high energy scattfrared. More general supergravity backgrounds, where the

tering cross sections for gauge theory processes, and deripack reactions of other f|elds are important, will entail more

the o~In2E behavior saturating the Froissart bound. ThiscOMPplicated generalizations of this correlator.

suggests that bulk physics in a sense “knows” about bound-. The Neumanq Green'’s function is defined to be the solu-

ary unitarity—although it is not clear what implications, if tion of the equation

any, this has for the problem of bulk unitarity. SHLX=X")
This picture also suggests a means to investigate the sub- DAy, (X, X)) = ———n"?,

sequent evolution of the scattered state, although to do so in V-G

detail seems to again require more knowledge of the string

backgrounds and the nonlinear solutions that live in themWhereX=(z,x) or (y,x), and the boundary condition is

and in particular of the stability properties thereof. In one ,

picture a black hole, once formed, “melts” onto the infrared dyAg1(X,X )|Y:°:0' (A2)

boundary. In other configurations, there may even be quasis- This may be solved by the

table black holesonly destabilized by Hawking evapora- r14) specifically, the Green's function solves the homoge-
tion); it is very interesting to cpnte_mplate properties of theyoqys Laplace equation far-7z' and forz<z': these two
dual description of such an object in the gauge theory.  spjutions may then be matched by integrating E41)

Open questions therefore include more thorough examiycross the singularity a=z'. In order to do so, we work
nation of these processes in more detailed models. In particygith the Fourier transform

lar, one may start with the gravity dual of th\e=1* theory

or other analogues. As pointed out, two of the relevant fea- ddx . ,

tures of the dynamics are the existence of gravity in the bulk, Ay (X, X")= f mﬁ'mx_x 'A(z,2').  (A3)
and of a stabilization mechanism for the position of the in-

frar_ed boundary, that is, the radion.field. It would be i”t?_r'Solutions to Laplace’s equation come in the form of super-
esting to better understand the relation between the Stab"'z%‘ositions of Bessel functionsz¥21yx(q2), z%2Y4x(q2)

tion of [16] and the GoIdberger—Wisg mechqnim, andthe  \ith 9%=—p2. We write the general superposition of such
question of whether there are more interesting effects beyongy tions forz>z’ andz<z', apply the boundary condition

those summarized by the effective stabilization stress tens%\z) demand that the Green’s function be regular in the UV
(3.20. We would like to know what possibilities exist for the atz=’0 and match by integrating E6AL) from z=2' — e to
radion mass: are there indeed consistent scenarios with the z’+’e. The result is straightforwardly found to be

radion mass exceeding the mass of the first Kaluza-Klein

(A1)

method of matching,” as in

mode, so that analogues to black holes can be relevant, and is o (22)%2

a large radion massas compared to R) possible? We Ap=2Rd_1 3 aR) [Yar(qz=)Jdgpn-1(gR)
would like to understand the properties of the resulting non- drz-1(9

linear gravitational solutions and to understand whether they —Jg(AZ2) Yo 1(qR) 13z ). (A4)

are classically unstable. The latter hinges on the question of

the existence of black brane solutions in the presence of the The Green’s function(A3) significantly simplifies with
other fields that provide stabilization and other dynamics; thene point on the brane:

corresponding question in the gauge theory is whether the

theory supports a finite temperature phase. It is certainly con- o [z\ d% 1 Jg(92) DO x)
ceivable that a variety of models result in a variety of differ- 2p+1(%,Z:X,R)=— R (2m9q Jyn1(aR)
ent effects. (A5)

This paper has probably just scratched the surface of the
role of strong gravitational effects in their Maldacena dual We also need the asymptotics of this Green’s function. At
gauge theories. either largex or smallz, dominant contributions come from
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the region withqz<1. This means that we can make a smallcorresponding ton?< 0. While we expect the dynamics to be

argument expansion igz to find qualitatively similar, it would be interesting to further eluci-
o g an date the pr_ecise relati_onship l_)etween the two schemes._
Ag, 1(X:0x')=— 1 z f d’p 1l/qz ~ We are interested in applying the mechanism to the lim-
SRR rdr+1)\R (277)a g\ 2 iting case where the UV brane is moved to infinity. We there-
p(xox) fore generalize the boundary condition at this end of the
% € ' (A6) space to state that, §s—»—,
Jaz-1(qR)

d— po(eY+AHY) (B2)

In particular, note that the integrand in E@\6) has no i .
pole atq=0—as expected, in this limit the volume is infinite for f'.XEd Po a}r]d arbitraryA. Here the exponents are the
fgmnlar guantities

and there is no massless d-dimensional graviton. It does havi

poles at the masses of each of the Kaluza-Klein modes of the d
graviton. At long distances the integral is dominated by the ki:ﬁt JdZ/4RZ + m?2. (B3)
mass of the lowest Kaluza-Klein mode, corresponding to the
first zero of the Bessel function: The boundary condition af=L is then taken to bep(L)
j = ¢L y f|X|ng A
M, =22 (A7) If we compute the actiofB1) as a function oL, we find
R the potential
The static Green’s function is obtained by integrating EQq. 1 . .
(A3) over time. Its asymptotic behavior is given in terms of V= Ef dy e VR (9, )2+ m?¢?]
this mass:
2
et _ 2019 ki Pkt
f dt’AdH(x;o,o,t'):k(ﬁ) 23 (A) 2 |R "o
A~ . ¢ \? —(ky+k_)L
wherek is a numerical constant. ke o) © +C|, (B4)
APPENDIX B: STABILIZATION, GOLDBERGER-WISE whereC is a cutoff-dependent but-independent term. This
OR OTHERWISE potential has extrema at
In this appendix we outline the basics of the Goldberger- b K2k k_(k k_—KZ+K%)
Wise mechanisni9], with particular emphasis on lardn ek-t= ¢T 212 (B5)
0 + 7 R-

the limit, infinite) brane separation, and relate it to the stabi-

lization stress tensd.20 used in the text. The radion mass, given By'(L), grows with the masm of

We begin by thinking of the situation with AdS space . R .
. . .the scalar field; thus the limit of large scalar mass is one way
truncated by a brane in the IR and one in the UV. The basi f motivating the limit of large radion mass used in Sec.

idea of the Goldberger-Wise mechanism is to postulate th?\/B

existence of a massive bulk field, with Lagrangian Note that we can also verify the approximate form of the

stress tensor used in E.20. From Eg.(B1) we find

1= [ a BT mT, 8D RS
Ty (dy)?—m?gp. (B6)

and such thatéthegluc_e of the field is fi_xed on both the IR The =0 vacuum value of this is treated as part of the
and UV branes.Bringing the branes either too close or t00 packground solution. The stabilizing stress arises from the

far raises the value of the actici ¢] at the corresponding  yariation of this ad., thus é, varies. In particular, we find
static solution¢ of the equations of motion. This therefore
generates a potential for the radion. aT§ dA ) ) 21 (ks —k_ )y 1y diR
Note that the Goldberger and Wise original analysis as- (7_|_°‘(9_|_[_4m +2Ag(kE —m)et -V el
sumedm?>0, but the mechanism works fon?<0 [21]. (B7)
This is presumably related to the stabilization evident in
Polchinski and Strassler’'s work, which involves a CFT per-The first term has the expected form of Eg.20. The sec-
turbation that is relevant, and hence has dimengien4, ond term is a correction that has support near the lower
boundary ay=0, but otherwise is small, and vanishes in the
limit m—oo. It also may be checked that there is a linmit
SGoldberger and Wise actually considered more generally a poten=*, ¢o— 0, such that the radion mass stays fixed goes
tial for the values ofp on the boundary, but we omit this unneeded to infinity), but the vacuum back reaction @f;(L=0) on
generalization. the metric stays small.
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